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bstract

Voltage loss in the bipolar plate (BP) is induced by in-plane current in the BP, which arises when the distributions of local current density over
he surfaces of adjacent cells are different. We show that potential of BP satisfies Poisson equation with the right side proportional to the difference

f local current densities on both sides of BP. Solution to this equation is obtained for BP between two hydrogen cells with the single straight
hannels and ideally humidified membranes. The general relation for voltage loss in the BP is derived.
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. Introduction

Bipolar plates (BPs) separate individual cells in a fuel cell
tack. Each BP distributes reactants over the cell surface through
he system of channels, collects current produced by individual
ell and transports this current from one cell to another. BPs
ccount for about 80% of the stack weight and 45% of its cost [1];
or these values alone it is clear that BP is one of the key stack
omponents.

In this work we will focus on a third function of BPs in the list
bove, i.e., on their duty to transport current from one cell to an-
ther. In stack modeling it is usually assumed that current crosses
P only in the through-plane direction (see e.g. [2]). This, how-
ver, is the case only when the distributions of local current over
he surfaces of adjacent cells are the same. However, due to var-
ous factors (different stoichiometries of feed molecules in the
ells, local “spots” of contact resistance, CO2 bubbles in DMFC
tc.), these distributions are usually different. Local balance of
urrent in the through-plane direction then is not fulfilled and
ignificant amount of current produced by the cells flows along
P (in-plane current). This current results in voltage loss in BP;
alculation of this loss is the subject of this work.

It is worth mentioning that local voltage drop between the

wo bipolar plates is equal to the local cell voltage. Therefore,
n-plane currents in the BPs change the distribution of the anode
nd the cathode polarization voltages over the cell surface. In
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ther words, the problem of voltage distribution in the BPs is
oupled to the problem of overpotentials distribution in the cells.
igorous approach to stack modeling thus requires solution of
quation for BP voltage together with a complete problem for
ndividual cells.

Voltage loss in the BP depends on the distribution of plate
otential: the more non-uniform this distribution the larger the
oltage loss (see below). Generally, to calculate voltage loss we
ave to calculate plate potential first.

Direct approach to this problem is as follows. Potential of BP
beys three-dimensional (3D) Laplace equation; the boundary
onditions for this equation provide the distributions of local
urrent density over the surfaces of adjacent cells and the absence
f current through the face planes of BP (see e.g. [3], where 2D
nalog of this approach is used to calculate voltage loss in the
egmented current collector of a single cell).

Below we will show that potential of a thin BP obeys 2D
oisson equation with the right side proportional to the differ-
nce of local current densities in the adjacent cells. In the case
f BP separating two cells with the single straight channels the
roblem is reduced to 1D Poisson equation. Solution of 2D or
D equation is much simpler than managing 3D problem; in a
D case the analytical solution can be derived.

. Voltage loss in the bipolar plate
.1. General assumptions

The thickness of BP (�1 mm) is typically 2 orders of magni-
ude smaller than its characteristic in-plane size (�10 cm). The
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Fig. 1. Sketch of the 2-cells stack with the large aspect ratio L � w.

ariation of potential across the plate can thus be neglected and
e may safely assume that in-plane current in the BP induces

he variation of plate potential only along the BP surface. For
implicity we will ignore the details of BP geometry (channel/rib
tructure) and consider rectangular BP of a thickness hp.

We will assume that in the membrane-electrode assembly
MEA) current flows only in the through-plane direction. Our
imulations [5] show that the fraction of current, which flows
along” the MEA is usually indeed negligible.

.2. Quasi-1D stack

To derive an equation for BP potential and to calculate the
espective voltage loss consider first the simplified system: the
-cells stack formed by the two identical cells A and B with the
ingle straight channels on both sides (Fig. 1). In this stack the
ength of the bipolar plate L is much larger than its width w,

� w (Fig. 1). Since L � w, we may neglect non-uniformity
f current along the y-axis and consider the variation of plate
otential only along the z-axis (Fig. 1). Physically, each cell in
ur stack is quite analogous to that considered in [4].

To understand the origin of voltage loss consider the follow-
ng problem. Let local current density jA in the cell A linearly
ecreases with z and jB in the cell B is constant (Fig. 2).

As in real stacks, the total currents in the cells A and B are the
ame: w

∫ L

0 jA dz = w
∫ L

0 jB dz = JLw, where J is the mean
urrent density in the stack. However, since jA(z) �= jB(z) there
s no local balance of the through-plane current. In other words,
ocal current generated in the cell A cannot reach load resistor

oving only in the through-plane direction (Fig. 2). Part of jA
ust be redistributed along z̃ to match the shape of current in

he cell B. This redistribution occurs in the BP and induces the
ariation of BP potential along z.

To calculate voltage drop along the BP we note that it is the
he difference jA − jB, which has to be redistributed along z.
lementary current (jA − jB)w dz entering the plate near the
oint a must be transported along the plate to the point a′
o provide the balance of local currents at a and a′ (Fig. 2).
he respective elementary potential drop between a and a′ is

Vaa′ = ((jA − jB)w δz)(2(z0 − z)r), where 2(z0 − z)r is the to-
al resistance of the plate between a and a′, r is the linear resis-
ivity of the plate (� cm−1) and z0 = L/2.

Since jA − jB in Fig. 2 is an odd function of z − z0, potential
f BP at z = L is

s
a

I

ig. 2. To the direct calculation of voltage drop along the bipolar plate. Local
urrent in the cell A linearly decreases with z; in the cell B local current is
onstant.

(L) =
∫ z0

0
δVaa′ = 2wr

∫ z0

0
(jA − jB)(z0 − z) dz (1)

t is convenient to introduce dimensionless variables

˜ = z

L
, j̃ = j

J
, Ṽ = V

RJ
(2)

here

= L2wr = L2

hpσ
(3)

s the plate resistivity (� cm2). Here hp is the plate thickness and
is the in-plane conductivity of the plate material (�−1cm−1).
Calculating dimensionless form of integral (1) with j̃A = 2 −

z̃, j̃B = 1 (Fig. 2) we find

˜ (1) = 1
6 (4)

n the odd case (Fig. 2) we know in advance that (jA − jB)w dz

as to be transported from a to the symmetrical point a′. In
he general case of arbitrary jA and jB these simple geometrical
rguments do not work and a general equation for plate potential
as to be derived.

.3. Equation for bipolar plate potential

Consider the voltage drop δV in the plate on the interval dz

ear the point z. Clearly,

V = Ir δz (5)

ere I(z) is the total current, which flows along the plate at z and
dz is the resistance (�) of the domain dz. Current I(z) is the

um of currents jA − jB entering the BP at all points between 0
nd z:

(z) = w

∫ z

0
(jA − jB) dz′ (6)
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ote that here jA and jB are the algebraic values, which are
ositive when directed along the normal to the BP surface and
egative otherwise.

Using (6) in (5) we find

∂V

∂z
= rw

∫ z

0
(jA − jB) dz′ (7)

ifferentiating (7) with respect to z we come to

∂2V

∂z2 = wr(jA − jB) + I
∂r

∂z
(8)

e see that potential of linear bipolar plate obeys Poisson equa-
ion. If r is constant, Eq. (8) simplifies to

∂2V

∂z2 = wr(jA − jB) (9)

The boundary conditions for (8) and (9) are

(0) = 0,
∂V

∂z

∣∣∣∣
z=0

= 0 (10)

he first condition establishes the reference point for V; the sec-
nd one follows from (7) and expresses the absence of normal
urrent through the end face of BP.

In dimensionless variables Eq. (9) transforms to

∂2Ṽ

∂z̃2 = j̃A − j̃B (11)

With (11) in hand we can calculate the distribution of poten-
ial along the plate for the currents in Fig. 2. Using j̃A = 2 − 2z̃

nd j̃B = 1 in (11) and integrating we get

˜ (z̃) = 1
2 z̃2 − 1

3 z̃3

t z̃ = 1 we get Ṽ (1) = 1/6, which coincides with (4).

.4. Potential of the two-dimensional plate

Eq. (9) can be generalized to the case of 2D plate. In this Sec-
ion we will derive the respective equation in a more straight-
orward way.

Consider small element of the bipolar plate (Fig. 3). Note
hat in this Section the BP surface is located in the x–y plane.
uppose that the local currents in the adjacent cells A and B are
irected as shown in Fig. 3. Balance of currents in the element
eads (Fig. 3)

Ehp δy − jWhp δy + jNhp δx − jShp δx = (jB − jA) δx δy

(12)

ote, that positive is the current directed along the normal to the
urface of plate element.

Dividing both sides of (12) by δx δy and noting that
− j = δj , j − j = δj , where j and j are x- and y-
E W x N S y x y

omponents of in-plane current density, we get

∂jx

∂x
+ ∂jy

∂y
= jB − jA

hp
(13)

V

Fig. 3. To the derivation of equation for potential of 2D plate.

ccording to Ohm’s law jx = −σ ∂V/∂x and jy = −σ ∂V/∂y;
or the plate potential we thus find

∂2V

∂x2 + ∂2V

∂y2 = jA − jB

hpσ
(14)

ince wr = 1/(hpσ), Eq. (14) is the 2D generalization of
q. (9).

For the 2D plate the natural space scale is the plate thickness
p, rather than w. Introducing dimensionless variables

ˆ = x

hp
, ŷ = x

hp
, ĵ = j

J
, V̂ = Vσ

Jhp
(15)

e finally get1

∂2V̂

∂x̂2 + ∂2V̂

∂ŷ2 = ĵA − ĵB (16)

ormal current through the end faces of the plate is zero; we
hus have the following boundary conditions for Eq. (16):

∂V̂

∂x̂

∣∣∣∣
x̂=0,L̂x

= 0,
∂V̂

∂ŷ

∣∣∣∣
ŷ=0,L̂y

= 0.

ere Lx and Ly are the plate sizes along the x- and the y-axis,
espectively. These conditions determine V̂ within an additive
onstant; the latter can be defined assigning arbitrary potential
o any point of the plate, e.g. taking V̂ (0, 0) = 0.

.5. Voltage loss due to in-plane current in the bipolar plate

To derive the general expression for voltage loss in the BP
e replace the BP with the equivalent resistor, which dissipates

he same electric power and transports total current JS in the
ystem, where S is the BP surface area.

Consider first the quasi-1D plate; total electric power dissi-
ated in the plate is

=
∫ L

0
I
∂V

∂z
dz = 1

r

∫ L

0

(
∂V

∂z

)2

dz (17)

oltage loss on the equivalent resistor is thus

1
∫ L

(
∂V

)2
loss =
rJwL 0 ∂z

dz

1 Note that j̃ ≡ ĵ.
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In dimensionless variables (2) the latter equation transforms to

Ṽloss =
∫ 1

0

(
∂Ṽ

∂z̃

)2

dz̃ (18)

In view of (7), which in dimensionless variables is ∂Ṽ /∂z̃ =∫ z̃

0 (j̃A − j̃B) dz̃′, Eq. (18) is equivalent to

Ṽloss =
∫ 1

0

(∫ s

0
(j̃A − j̃B) dz̃

)2

ds (19)

Thus, in a 1D case the voltage loss can be calculated not solving
the problem for BP potential. Note, however, that numerical
solution of Eq. (11) and subsequent calculation of integral (18)
can be faster than the calculation of double integral (19).

In 2D case Eq. (18) takes a form

V̂loss =
∫

Ŝ

[(
∂V̂

∂x̂

)2

+
(

∂V̂

∂ŷ

)2]
dŜ (20)

2.6. Voltage of bipolar plate between two ideally humidified
hydrogen cells

To illustrate the capabilities of this approach consider local
current j̃λ(z̃) in the single-channel hydrogen cell with the ideally
humidified membrane [6,7]

j̃λ(z̃) = fλ

(
1 − 1

λ

)z̃

, (21)

where

fλ = −λ ln

(
1 − 1

λ

)
(22)

and λ is the oxygen stoichiometry. It is easy to verify that
∫ 1

0 j̃λ

dz̃ = 1.

Fig. 4. Local current densities in two hydrogen cells with ideally humidified
membranes running under oxygen stoichiometries λA = 1.3 and λB = 3. To
reach load current j̃B − j̃A must be transported from zone a to zone a′ through
the bipolar plate (thick grey arrow).

Let the cells A and B in our quasi-1D stack operate at λA and
λB, respectively (Fig. 4). Let the inlets of all channels be located
at z = 0 and the outlets at z = L. The local currents in these cells
then are j̃A = j̃λA and j̃B = j̃λB . Note that this problem cannot
be solved using simple geometrical arguments, since j̃A − j̃B is
not an odd function (Fig. 4).

Using j̃λA and j̃λB (21) in Eq. (11) and solving we find

Ṽ (z̃) = λA

ln(1 − (1/λA))

[(
1 − 1

λA

)z̃

− 1

]

− λB

ln(1 − (1/λB))

[(
1 − 1

λB

)z̃

− 1

]
+ (λB − λA)z̃

(23)

Voltage loss due to in-plane current in the plate is given by
Eq. (18). The difference λA − λB in the stack is usually small;
let λB = λ and λA = λ + δλ. Calculating integral (18) with Ṽ

(23), substituting λB = λ and λA = λ + δλ into the result and
expanding over δλ we find

Ṽloss �
[

1 + 6λ(1 − λ) + (1 − 2λ)/ln(1 − 1/λ)

4(λ − 1)2f 2
λ

]
(δλ)2 (24)

where fλ is given by (22).
The function in the square brackets in (24) is shown in Fig.

5. Under fixed δλ the voltage loss dramatically increases when
λ tends to 1. Note that depending on the feeding scheme the
cells in a stack may operate at different stoichiometries. Typi-
cally, the cells located far from the oxygen inlet operate at lower
stoichiometries than those at the inlet. Eq. (24) shows that the
voltage loss in the BP between these “remote” cells may be sig-
nificant. Two cells running at different stoichiometries close to 1
form a “bottleneck” for current transport through the stack; this
bottleneck may reduce the overall stack efficiency. Note also
that the voltage loss is proportional to the square of δλ; it is thus
important to keep a variation of λ between two adjacent cells as
small as possible.

With λ = 1.1 and δλ = 0.2 Eq. (24) gives Ṽloss � 1.7 ×
10−2. The conductivity of carbon BPs σ varies between
102 �−1 cm−1 [8] and 103 �−1 cm−1 [9] . Taking σ =

Fig. 5. The function Fλ in square brackets in (24).
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02 �−1 cm−1, L = 10 cm, hp = 0.1 cm and J = 1 A cm−2, we
et Vloss � 140 mV. This value is quite significant for fuel cell
pplications.

It should be emphasized that Eq. (21) is valid when the polar-
zation voltage of the cathode side η is constant along z̃. Voltage
rop along the bipolar plate may violate this condition. A rig-
rous approach requires to consider the problems in the bipolar
late and in the MEA simultaneously. The results of this work
ill be published elsewhere.

. Conclusions

We have shown that in-plane current in the bipolar plate arises
hen the distributions of local current over the surfaces of ad-

acent cells are different. This in-plane current results in a vari-
tion of potential V along the BP surface. V satisfies Poisson
quation; the right side of this equation is proportional to the
ifference of local current densities in the adjacent cells. Ana-

ytical solution to the problem is obtained for the BP separating
wo ideally humidified hydrogen cells running at different oxy-
en stoichiometries. This solution shows that the voltage loss in
he BP dramatically increases when oxygen stoichiometries in

[

[
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oth cells are different and close to 1. The general relation for
he voltage loss in the bipolar plate is derived.
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